Spatial Distribution of Solar Photovoltaic (PV) Deployment:
An Application of the Region-Based Convolutional Neural Network
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few attempts to measure the PV-to-roof ratio, or the

proportion of roofs covered by solar panels. Little is Sinn
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vulnerabilities and local-level policies shape TR 200 e il
rooftop solar deployment. s TR e g Ay W
QUESTION: (1) How does rooftop solar deployment
vary across neighborhoods in Colorado? (2) What
are the predictors of rooftop solar deployment?
PURPOSE: This study aims to generate a novel and
granular solar deployment dataset at the US census
block group level using satellite imagery from the
state of Colorado in 2021 and identify important
predictors of rooftop solar deployment in Colorado.

AREAS OF INTEREST:
142K Census blocks in
Colorado with at least

1 resident represented
by the gray area in Fig 1.
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» Census Block-Group Level:
v' Demographics (US Census)
v Housing Characteristics (US Census)
v’ Solar Irradiance (NREL)
v Tree Canopy Cover (USFS)
v Transmission Line Length & Voltage (HIFLD)
v’ Electricity Price & Service Provider (NREL)

* Census Tract Level:
v Natural Hazard Risk Index (FEMA)
v’ Social Vulnerability Index (CDC)
v Urban-Rural Classification (USDA)

» City/County Level:
v Permitting and Inspection Rules (NREL)
v’ Political Affiliation (MIT Election Lab)

In Colorado, 2.5% of roofs are covered by solar
panels on average (Fig 5a), and 7% of households
have solar panels on their roofs (Fig 5b).
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Figure 3. Data Processing Workflow

Fig 4b. Predictors of PV Count per HH
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Fig 4a. Predictors of PV-to-Roof Area
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Fig 6b. PV Count per HH Shapley Values
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DATA: (i) Rooftop solar

Deployment data are from =« "o
652,795 satellite images ~ * Tt R
collected using Google Maps API; (ii) Data of 43
environmental, socioeconomic, and infrastructure
predictors of rooftop solar deployment from various
sources (e.g., FEMA, HIFLD, USFS, NREL).
COMPUTER VISION: Faster-RCNN (Ren et al.
2015) to predict the size of roofs and PVs in all
images. We manually annotated 367 images (as in
Fig 2) and constructed training (80%), dev (10%)
and test (10%) sets. Intersection over Union (loU),
area(A, N A,;) Where Ajis the predicted frame and
area(A, U Ag) Ay the ground truth frame, is 95%
and 81% for detecting roofs and PVs, respectively.

IoU =

Figure. 2. (a) Original (b) Roofs (c) Solar PV
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Average number of bedrooms (—) and permit and pre-install timelines (—) are two of
the most important predictors of PV-to-roof area. % of democratic voters (+) and
hail risks (—) are two of the most important predictors of PV count per household.

Avg. No. Bedrooms

positively
predict PV
Count per HH.

(i) High variation in PV count per HH (CV = 1.33)
and medium-high variation in PV-to-Roof area (CV =
.78); (ii) Shorter permitting and inspection timeline
may promote solar deployment; (iii) The relationship
between HH income and solar deployment may
depend on racial/ethnic composition of regions (Fig
7); (iv) natural disaster vulnerability (e.g., hails) can
discourage solar PV deployment

Fig 7. Differential Average Marginal Effects of Median HH Income
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Average Marginal Effects of Income on
Solar PV Count Per Household




